# SDR console Adding an SDR and brief set up

### Introduction

SDR console is a both a very comprehensive and also easy to use Software Defined Radio package that has been developed within the amateur radio community for the said same community. This software is regularly updated and improved and has gained the reputation of one of the go to software package for both SDR receive and transmission. There are a great many things it can do but for the purposes of these instructions we will only focus on the addition of a network provided SDR receiver.

For further reading and more detailed support please go to the home page for this software <u>https://www.sdr-radio.com/</u>

Download from here > <u>https://www.sdr-radio.com/download</u>

## Overview

This is the main operations page of the software, in this case setup for the GB3MBA meteor scatter beacon. You can see the key tabs on the top row that provide access to the key pages, however for simplicity and brevity we will only use the *Home* tab for this activity.



## Prerequisites

- 1. A windows PC (V7,10 or 11) with the current version (3.1) SDR console installed
- 2. Supported SDR receiver, such as RSPDX, Funcube dongle, RTL dongle, or see here for the full list <u>https://www.sdr-radio.com/radios</u>

## Adding an SDR receiver

If this is a fresh installation then you will see a dialogue box pop up saying there are no radios defined and asking if you wish to do so. If this is an existing installation then click on the button marked as select radio, it is the first icon on the left of the top row

You should see the window on the right pop up, this is where all of the initial radio selection is done. In this example you can see a few locally connected devices and one network connected SDR. If it is a fresh installation then there will be nothing listed.

### **Configuration steps**

- Click on the definitions button, you should now see the SDR radio definitions list as shown on the right. Again if this is a fresh installation then this list will be empty.
- 2. Click on the Search button and a drop down list will appear. This contains a list of the supported hardware that can be directly connected. Look for your connected device and select it.
- 3. Once added select save and the window will exit back to the select radio dialogue box where you should now see your radio.
- 4. For some of the radios there are some extra steps
  - a. RSPDX, you must first download and install the API from here <u>https://www.sdrplay.com/downloads/</u>
  - b. For the funcube dongle you must ensure that on the select radio page you also select the sound card setting to match ie to show the FCD. This is an extra step for all SDR's that use an audio codec.
- 5. Select the appropriate bandwidth for your SDR, for this application choose the smallest
- 6. Select start and your radio should now be active and running.

| All          | Local                       | ⇔ Server             |                    |               |          |  |  |  |
|--------------|-----------------------------|----------------------|--------------------|---------------|----------|--|--|--|
| Nar          | ne                          |                      | Model              | Frequency     | Serial   |  |  |  |
| FUN          | vcube 2.0                   |                      | FUNcube 2.0        | 0 - 2000 MHz  |          |  |  |  |
| RTL          | Dongle - R                  | 820T                 | RTL Dongle - R820T | 50 - 2000 MHz | 00000001 |  |  |  |
| SDF<br>⇔ Ser | tPlay RSP 1A<br>ver: 81.159 | 0 - 2000 MHz         | 190306FC96         |               |          |  |  |  |
| •            |                             | III                  |                    |               |          |  |  |  |
| Converter:   | Down: 9                     | 9750.1 MHz           | •                  |               |          |  |  |  |
| Soundcard:   | CABLE                       | Input (VB-Audio Virt | ual Cable) 🔫       |               |          |  |  |  |
| Bandwidth:   | 1 MHz                       | •                    |                    |               |          |  |  |  |

| Q Sea       | arch 🔻                                 | Add                  | Edit  | Delete                                            |                                                 | Text viewe |
|-------------|----------------------------------------|----------------------|-------|---------------------------------------------------|-------------------------------------------------|------------|
| Enable      | Name                                   |                      |       | Model                                             | Frequency                                       | Serial     |
| V<br>V<br>V | FUNcube 2.<br>RTL Dongle<br>SDRPlay RS | 0<br>- R820T<br>P 1A |       | FUNcube 2.0<br>RTL Dongle - R820<br>SDRPlay RSP1A | 0 - 2000 MHz<br>T 50 - 2000 MHz<br>0 - 2000 MHz | 000000     |
|             | Server: 81.                            | 159.241.230:::       | 50101 |                                                   |                                                 |            |

#### SDR console settings

There are a great many setting on SDR console as it is a very versatile piece of software, we will only focus on a few as it is very often easy to get lost and soon lose functionality. The key ones for us are RF gain, AGC / IF gain, plus some display settings.

|                 |             |      |                                             | ~          |                     |             |                                  |                  | _                           |                      |                               |                 |
|-----------------|-------------|------|---------------------------------------------|------------|---------------------|-------------|----------------------------------|------------------|-----------------------------|----------------------|-------------------------------|-----------------|
| 9-7             | Home        | View | Receive                                     | Rec/Playba | ck Fa               | avourite    | s Memo                           | ories            | Tools                       | Help                 |                               |                 |
| Select<br>Radio | ()<br>Start | Stop | +++ Bandwidth<br>A Calibration<br>Erequency | RF Gain    | IF Gain<br>-50 dB ▼ | AGC<br>On T | Visual Gain<br>0 dB <del>•</del> | HDR<br>Disable • | ((A))<br>Antenna<br>SMA A + | MW/FM Notch<br>Off + | DAB Notch<br>Off <del>•</del> | Bias-T<br>Off ▼ |
|                 |             | *    |                                             |            |                     |             |                                  |                  |                             |                      |                               |                 |

We will also focus on the frequency setting, mode and bandwidth settings for what we need to get the most from the GB3MBA beacon.

#### Frequency and mode

The frequency is displayed and adjusted from the receive window as shown to the right, there is also a direct entry method. To use the main display just click on each digit and either use the scroll wheel on the mouse or click up and down on the bars shown above and below the selected digit.

The mode we require is CW-U, it is better to setup up a specific mode setting but that is a bit advanced for this guide.

The bandwidth we need is ideally +-1.5Khz, now this can be set by dragging the green mask over the selected centre frequency or by direct entry by selecting frequency from the main menu bar as shown above \*.

When selected you will see the following dialogue box. You will note that the frequency is already shown as is the bandwidth in this example. Set yours the same and then click OK.

| Radio Frequency |                         | ×       |  |  |  |  |  |  |
|-----------------|-------------------------|---------|--|--|--|--|--|--|
| Format:         | Frequency, ±Span        | n 🔻     |  |  |  |  |  |  |
| Receiver:       | Center if off           | screen  |  |  |  |  |  |  |
|                 |                         |         |  |  |  |  |  |  |
| Frequency:      | 50.408000               | MHz     |  |  |  |  |  |  |
| Span:           | ±1500                   | MHz     |  |  |  |  |  |  |
|                 | OK Pre                  | vious 🔻 |  |  |  |  |  |  |
|                 | 50.406.500 - 50.409.500 |         |  |  |  |  |  |  |



### RF + IF gain and AGC

This can be a tricky aspect of the performance of the radio as we are working on very small signals at times in a part of the band that can be very noisy and also have some very strong signals nearby. This means that we need a high performance receiver set to its optimal performance point, this can be left to the device and or software to do but might not always be optimum or we can manually set the key parameters ourselves. Without knowing the specifics of each site it is not possible for these instructions to have a one size fits all and as such a guide will be provided on the key parameters.

#### **RF** gain

This will set the sensitivity of the receiver however it is not as simple as set it for maximum due to other issues that might result such as overload. Also it does vary between devices on the maximum level and the impacts on performance in general. For the RSPDX the default is set at 20 and in a good noise free environment can be set as high as maximum without any serious issues. That being said if your local noise is too high then the more gain you have the more noise you will see so nothing will really be gained and in fact you might make it worse.

The recommendation is to increase the gain until you see a rise in the noise floor and then leave it set at that level.

#### IF gain

This is very device dependant and if the AGC is set to on will be automatically controlled for maximum performance. It is not recommended to adjust this unless you are familiar with how it works on your chosen device.

#### AGC

AGC or automatic gain control, on some devices it is very effective and is best left ON while you are getting used to your system though for some you can get improved performance by setting it to manual and adjust RF and IF gains yourself. It is recommended to leave this on auto until you get familiar with the performance and environment you are using it in.

When you are comfortable with how your setup performs then it is advisable to switch off the AGC just in case in has any impacts on any strong meteor echoes, just be mindful of any overload issues from out of band signals that can cause a number of issue, if in doubt switch it back on to compare.

#### **Display settings**

There are a great many very useful settings however we will just focus on the key ones needed to get you started. The key ones show up when you hover your mouse over the centre right of the display, scale, Low, High, >|< and zoom.



There is one other display setting that is essential and that is the contrast of the water fall in the lower window this is set by dragging the highlighted bar on the right up or down.

For meteor observations and for checking noise levels the digital meter option is recommended. From the view menu set scale to dBm - Auto. Signa, meter Digital – select.

For certain soundcards such as the Fun Cube Dongle that use an audio type ADC there can be what is referred to as a DC spike in the centre of the selected bandwidth. This is managed automatically by SDR console by using a very narrow -+10 Hz 20 db notch. In normal use you this will go unnoticed, however in this case if you are looking for a direct signal from the beacon you might not see it.

The procedure to manage this is pretty simple and is as follows :-

- 1. set the frequency to 50.408.500
- 2. Click the centre the display icon on the pop up display on the right >|<
- 3. Retune to 50.408.000
- 4. Your wanted frequency will now be 500hz to the left of the centre
- 5. The notch is still there but at a known 500hz high point the the observation frequency

### **Antennas and Noise**

An antenna suitable for 50MHz is essential and a simple wire dipole is a good starting point.



Man made noise is a problem on 50MHz and it is a good idea to check the noise level at your location before you invest too much time, money and effort.

This can be done quite easily using SDR Console by comparing the noise floor with the antenna connected to the noise floor with the antenna replaced by a 50 Ohm resistor. ( $2 \times 100$  Ohms in parallel is ideal).





Figure 3 shows noise floor with antenna connected. It is important to "tune" the receiver to a part of the spectrum with no signals present by clicking the pointer on spectrum display. In this case 50.404 was clear of signals.

| · · · ·            |            | 0       | 0 🖲 🌟 i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 🖥 🐻 🗼                | <b>)</b> =           |              |                      |             |                                      |                 |           |          |                   |               |              |         |        |                      |                     |     |           |                 |                  |        |               |          |          |                                    |                           |                                       |           |                    |
|--------------------|------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------|--------------|----------------------|-------------|--------------------------------------|-----------------|-----------|----------|-------------------|---------------|--------------|---------|--------|----------------------|---------------------|-----|-----------|-----------------|------------------|--------|---------------|----------|----------|------------------------------------|---------------------------|---------------------------------------|-----------|--------------------|
|                    | Home       | View    | Receive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Transmit             | Rec/P                | ayback       | Favourite            | es N        | temories                             | Tools           | Help      |          |                   |               |              |         |        |                      |                     |     |           |                 |                  |        |               |          |          |                                    |                           |                                       | <u> </u>  | 용 Style •          |
| Select<br>Radio    | )<br>Start | Stop    | ++ Bandwid<br>()<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Ca | th •<br>on<br>RF Gai | in IF Gair<br>-25 dB | AGC<br>Off T | Uisual Gai<br>0 dB ▼ | n Ai<br>SMA | (Å)<br>ntenna<br>. (50 Ω) ▼<br>Radii | AM (Hi-Z<br>Off | ) Notch N | W/FM Not | ch DAB No<br>Off¶ | tch Bia<br>Or | s-T Ref      | Lock Tu | ner    | Radio<br>Configurati | Online<br>ion Suppo | e P | revious F | listory<br>ency | Always<br>On Top | Child  | Lod<br>Extras | K Screen | hshot    | Auto-mut<br>Enable<br>Optio<br>Wit | e Noisi<br>e E<br>ns 2000 | e Blanker:<br>Enable<br>Options<br>SP |           |                    |
| -35 dBm            | - 8        | 6 dBm   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                    |                      |              |                      |             |                                      |                 |           |          |                   |               |              |         |        |                      |                     |     |           |                 |                  |        |               |          |          |                                    |                           |                                       |           | -35 dBm A          |
| -40 dBm            |            |         | -120 -10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 90 - 50 - 64         | 0 -40                | 20           |                      |             |                                      |                 |           |          |                   |               |              |         |        |                      |                     |     |           |                 |                  |        |               |          |          |                                    |                           |                                       |           | -40 dBm            |
| -S0 dBm            |            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      | 1                    |              |                      |             |                                      | -               |           |          |                   |               |              |         |        |                      |                     |     |           |                 |                  |        |               |          |          |                                    |                           |                                       |           | -50 dBm            |
| -55 dBm            |            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                      |              |                      |             |                                      | in the second   |           |          |                   |               |              |         |        |                      |                     |     |           |                 |                  |        |               |          |          |                                    |                           |                                       |           | -55 dBm<br>-60 dBm |
| -65 dBm            |            | <b></b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                      |              |                      |             |                                      | -               |           |          |                   |               |              |         |        |                      |                     |     |           |                 |                  |        |               |          |          |                                    |                           |                                       |           | -65 dBm            |
| -70 dBm<br>-75 dBm |            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                      |              |                      |             |                                      |                 |           |          |                   |               |              |         |        |                      |                     |     |           |                 |                  |        |               |          |          |                                    |                           |                                       |           | -70 dBm<br>-75 dBm |
| -80 dBm            |            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                      |              |                      |             |                                      |                 |           |          |                   |               |              |         |        |                      |                     |     |           |                 |                  |        |               |          |          |                                    |                           |                                       |           | -80 dBm            |
| -85 d8m<br>-90 d8m | ٨          |         | <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                      |              | o b                  |             |                                      |                 |           |          |                   |               | ۸            |         |        |                      | ٨٨                  |     | A. A      |                 |                  |        |               | . 14     | ٨        |                                    |                           | ۸                                     |           | -85 dBm            |
| MAS dep            | MI         | W       | Mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MAN                  | Mw                   | mm           | M/N                  | Mr          | -44.1                                | MN              | MANN      | Mru      | MAM               | m             | $\mathbb{N}$ | MM      | M      | ~M.                  | w۳h                 | Lyn | MVV       | W.              | . Mw             | WW     | WM            | M        | W        | mu                                 | MM                        | MA                                    | NW        | -100 dilla         |
| . 1                | V          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                    |                      | 7            | V V                  |             |                                      | V               |           |          |                   | V             |              | W       | v      | V                    |                     | .,, | . 1       |                 |                  |        |               | ¥        | V'       |                                    |                           | 1001010                               | )         |                    |
| 50.4               | 406.6      | 5       | 0.406.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50.407.              | .0                   | 50.40        | .2                   | 50.4        | 07.4                                 | 50.             | 407.6     | 50.      | 107.8             | 50.           | 408.0        |         | 50.408 | 32                   | 50.408              | 14  |           | 50.408.6        |                  | 50.4   | 8.80          |          | 50.409.0 |                                    | 50.409                    | 0.2                                   | 50.4      | 09.4               |
|                    |            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                      |              |                      |             |                                      |                 |           |          |                   |               |              |         |        |                      |                     |     |           |                 |                  |        |               |          |          |                                    |                           |                                       |           |                    |
|                    |            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                      |              |                      |             |                                      |                 |           |          |                   |               |              |         |        |                      |                     |     |           |                 |                  |        |               |          |          |                                    |                           |                                       |           | -                  |
|                    |            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                      |              |                      |             |                                      |                 |           |          |                   |               |              |         |        |                      |                     |     |           |                 |                  |        |               |          |          |                                    |                           |                                       |           |                    |
|                    |            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                      |              |                      |             |                                      |                 |           |          |                   |               |              |         |        |                      |                     |     |           |                 |                  |        |               |          |          |                                    |                           |                                       |           |                    |
|                    |            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                      |              |                      |             |                                      |                 |           |          |                   |               |              |         |        |                      |                     |     |           |                 |                  |        |               |          |          |                                    |                           |                                       |           |                    |
|                    |            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                      |              |                      |             |                                      |                 |           |          |                   |               |              |         |        |                      |                     |     |           |                 |                  |        |               |          |          |                                    |                           |                                       |           |                    |
|                    |            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                      |              |                      |             |                                      |                 |           |          |                   |               |              |         |        |                      |                     |     |           |                 |                  |        |               |          |          |                                    |                           |                                       |           |                    |
|                    |            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                      |              |                      |             |                                      |                 |           |          |                   |               |              |         |        |                      |                     |     |           |                 |                  |        |               |          |          |                                    |                           |                                       |           |                    |
|                    |            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                      |              |                      |             |                                      |                 |           |          |                   |               |              |         |        |                      |                     |     |           |                 |                  |        |               |          |          |                                    |                           |                                       |           |                    |
|                    |            | UTC     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                      |              |                      |             |                                      |                 |           |          |                   |               |              |         |        |                      |                     |     |           |                 |                  |        |               |          |          |                                    |                           |                                       |           |                    |
| 1                  | 0:4        | 42      | :28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                      |              |                      |             |                                      |                 |           |          | Fr                | eq: 50        | .408         | MHZ     |        |                      |                     |     |           |                 |                  |        |               |          |          |                                    |                           |                                       |           |                    |
|                    |            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                      |              |                      |             |                                      |                 |           |          | sp                | anti I.       | 1500         | Knz     |        |                      |                     |     |           |                 |                  |        |               |          |          |                                    |                           |                                       |           |                    |
| ۲                  |            |         | 50.402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                      | 50.40        |                      |             |                                      | 50.406          |           |          | 50                | 108           | 1            |         |        | 50.410               |                     |     |           | 50.4            | 12               |        |               | 5        | 50.414   |                                    |                           | 195                                   | j x5      | • 🕑                |
| RSPduo,            | BW = 1.0   | 00 MHz  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                      |              |                      |             |                                      |                 |           |          |                   |               |              |         |        |                      |                     |     |           |                 |                  | . CPU: | 2.6%          |          | GP       | U: 10.9%                           | 1                         | Au                                    | dio: 57ms | -                  |

Eiguro 1

Figure 4 Shows system noise with the antenna replaced by a 50 Ohm load.

In this example the noise floor with antenna was -75dB and with 50 Ohm load was -80 so noise increase with antenna is 5dB. This is for a fairly quiet location. An increase of much more than 10dBs suggest that unless the antenna type or position can be improved to reduce the noise level then reception of echoes from GB3MBA may be difficult. In this case, when Phase II of the project has progressed, use the web based receivers that will be available as these will be in radio quiet locations.

Other factors such as the receiver sensitivity can affect this measurement so some care must be taken when interpreting the results. Early versions of the RSP series of SDR were found to turn OFF their LNA bellow a frequency of 60MHz making a pre amplifier necessary to achieve good results. A filter may also be useful and as very strong out of band signals may cause problems.

This diagram illustrates the issue of noise. The long arrow shows the level of the wanted signal. If the noise is at the level of the lower small arrow then we will see it, however if the noise is at the level of the upper small arrow then it will be hidden by – the noise

|   | -40 d8m dBm 100 0.00 -60 -40 m 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40 d3n              |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|   | -45 dBm240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -45 dbr             |
|   | -50 d8m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -50 dBr             |
|   | -55 clm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 55 dBr              |
|   | -60 c8m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -60 dBm             |
|   | -65 d8m -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -65 dBr             |
|   | -70 sBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -70 sile            |
| ► | -75 eBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -75 eBe             |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |
|   | -85 d8m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -85 dBr             |
|   | Henry Marken Marke | Munanalan paramanta |

## Notes and additional information

This section will be updated as specific questions and requirements become known